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Abstract-The two dimensional plane strain problem of adhesively bonded joints with gap defects
in the adhesive is treated. A simple lap joint with a gap is considered, and the effect of bending is
included in the formulation. The results show steep edge gradients for peel and shear stresses, and
the peak stresses always occur at the extreme ends of the overlap, regardless of the presence of the
gaps. The gap has little effect on the peak stresses, unless it is sufficiently close to an end, where an
example indicates that stresses can be affected by as much as 25%. Published by Elsevier Science Ltd.

INTRODUCTION

Adhesively bonded structures are used in aerospace and high technology structural com­
ponents and have many advantages in terms of design flexibility, cost reduction and
simplicity of fabrication, It is known however, that defects in the adhesive can severely
reduce the bond strength. The presence of gaps or disbond type of flaws in the adhesive
will increase the peak stress levels which occurs at the joint ends and near the defect itself.
The joint may fail at the ends of the joint at the ultimate stress or it may fail under cyclic
loading where local debonding near the flaw can grow.

In past work related to the present study Delale et al. (1981) considered problems for
a continuous joint and included bending and transverse shear in the adherends. With
appropriate assumptions, they reduced the problem to a system of differential equations,
which is solved in closed form. The validity of their method was established by comparing
the closed form results of a sample problem with those of a finite element analysis. Renton
and Vinson (1978) obtained similar behavior for the shear and peel stresses. Their closed
form solution, in conjunction with their BOND4 computer program, represents a rather
complete analysis of the single lap joint, where both transverse shear and normal strains
were also included in the adherends.

The initial work on the effect of bondline flaws and gaps in the adhesive, as was done
by Hart-Smith (1981), Kan and Ratwani (1983), and Rossettos et al. (1993,1994) used the
essence of the shear lag model, where the adherends take on only axial load and the adhesive
takes only shear (see Erdogan and Ratwani (1971». This is appropriate in bonded joints
which are designed so that the net load path does not produce bending.

In the present paper, the two dimensional plane strain problem of adhesively bonded
joints is considered. The structure consists of two different adherends bonded by an adhesive
layer which contains a gap (void), and the joint undergoes bending. The analysis is a
variation of the method given by Delale et al. (1981), where simplifying assumptions
consider the adherends to be orthotropic plates for which a transverse shear theory is used.
It is also assumed that the thicknesses of the adherends are constant, and are small compared
to the lateral dimensions of the bonded region. It is further assumed that the thickness of
the adhesive is sufficiently small so that the thickness variation of normal and shear stresses
in the adhesive can be neglected. The problem in the present work is then reduced to a sixth
order differential equation in terms of the stress resultant in one of the adherends and is
solved in closed form. Once the load distribution in one of the adherends is known, the
shear and normal stresses (peel stresses) can be determined. Note that the formulation used
here is different than the one used by Delale et al. (1981), where the governing differential
equations are given in terms of shear and peel stresses in the adhesive.
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Fig. 1. Continuous single lap joint under tension.

The problem of adhesively bonded joints with a gap in the adhesive, and which
undergoes bending, is treated for the first time. The analysis is similar to the continuous
bond problem, with the exception that the governing equations in the gap region will be
different, and additional continuity conditions connecting the gap region with the con­
tinuous adhesive are used to obtain the solution. The continuity conditions in the present
approach are conveniently described in terms of the stress and moment resultants.

ANALYSIS

Analysis for a continuous joint
Consider an adhesively bonded structure which consists of two plates bonded by an

adhesive layer. Plate I is a composite with orthotropic characteristics and plate 2 is made
of an isotropic material (Fig. 1).

Let N j (x) and Nz(x) be the resultant forces per unit width in plate I and plate 2
respectively. QI (x), Q2(X) and M 1(x), M 2(x) are the transverse shear load and moment per
unit width in plates I and 2 respectively. From Fig. 3, the following can be obtained
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Fig. 2. Single lap joint with a gap (void) under tension.
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Fig. 3. Free body diagram of plate 1 and plate 2 (continuous).
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(3)

(4)

(5)

(6)

where h, and h2 are the thickness of adherend I and adherend 2 respectively and ho is the
thickness of the adhesive. Also r = !xy is the shear stress in the adhesive and (J = (Jy is the
normal (peel) stress in the adhesive. Note that N" N 2 , M" M 2 and Q" Q2 are the load,
moment resultant and the shear force per unit width in plate I and 2 respectively.

The stress (N" N 2 , Q" Q2) and moment resultants (M" M 2 ) can be related to the x
and y components of the displacements Vj, u, and to the rotation Pi by the following:

du,
(7)dx =CjN,

dU 2 (8)(i= C2 N 2x

dv] +PI = ili (9)
dx B 1
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(10)

(11 )

(12)

where Bi = ~hiGi and C = (1- vixvJlhiEiand Di = 12(1- VixviJ/M Ei. Note that Eh Gi (i = 1,
2) are the modulus of elasticity and rigidity of the adherends respectively.

To obtain the strains en ey and lx, in the adhesive, the y-dependence of the strains is
assumed to be negligible. The strain ex is an average in plane strain. The following relations
are used.

(13)

(14)

(15)

The stress-strain relations are then given by

r
YXI' =(j:

(16)

(17)

where T = (1- v- 2v2)1E(I- v) and Z = v/(l - v). Also note that E, G and v are the elastic
constants of the adhesive.

By eliminating the displacement and strain quantities in eqns (1-17) in terms of stress
resultants and moments by appropriate differentiation and combination, two coupled
differential equations in terms of N I and M 1 can be obtained (derivation details are given
by Olia (1992)). They are written as follows:

d 4 M d 4 N d 2 M d 2 N
__I +f __I +/' __I +f __1 +}' M +}' N - / M
d

4 ,1 d 4 ,2 d? ,3
d

? 4 I 5 1 -,6 ()
X X ;c x"

(18)

(19)

(
ho hi +h2 )where No is the load applied to the plates and M o = 2 + --4- No is the moment

needed to maintain equilibrium, and where
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Equation (19) is used to eliminate M l from eqn (18) which then becomes the following
sixth order differential equation in terms of N l ,

(20)

where

Xl = k l -/lk 2+/2; X2 = 12 k l -f,k2+/4; X 3 = j~kl -j~k2

f31 = -/4k 3; f32 = -/6k 2-/4k 4'

Equation (20) is the governing differential equation for plate 1 in terms of N l • A solution
can be assumed in the form of N l = eRx for the homogeneous part. The complete solution
can then be written as

N ~ C Rx f31 N f32 M
I = f..., i e ,. + - 0 + - 0

i~ I 0: 3 0:3
(21 )

where the R; are roots of the characteristic equation associated with the homogeneous part
of eqn (20). Note that the terms involving No and M o on the right hand side of eqn (21)
are the particular solution. Once the load in plate 1 (N l ) is known, general solutions for all
other stress and moment resultants in plates 1 and 2 can be obtained as follows:

(22)

(23)
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(24)

(25)

(26)

Boundary conditions
To find the constants (C;), the following boundary conditions can be used. At x = I

[see Fig. (1)] (21 is the length of the adhesive)

and at x = -I

N 1 = 0 Ql = 0 M 1 = O.

(27)

(28)

Once the C/s are determined, the shear and normal (peel) stresses in the adhesive can be
found using eqns (21-26) and (1--4)

Analysis ofajoint with gaps (voids)
In order to obtain the governing equations for a simple lap joint with a gap or void,

the adhesive is divided into three regions, as shown in Fig. 2. The equilibrium equations
(1-6) are valid for region one and region three. In the void region, the shear stress rxy = 0
and normal stress (Jy = 0, as a result the equations for region two (gap or void) are (Fig. 4)

dN[ dN1
--=r=O --= -r=O
dx dx

dQl dQl
-=(J=O -=-(J=O
dx dx

(29)

(30)

~x

Fig. 4. Free body diagram of plate I and plate 2 (gap).
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Fig. 5. Overall equilibrium diagram of a single lap joint.

(31 )

Note that for any value of x the overall equilibrium gives (Fig. 5)

(32)

The solution to N], N2, M], M 2, Q], Q2 in region one and three are obtained using
eqns (21-26), except that the constants C,'s are different in each region. Using eqns (29­
31) and overall equilibrium, N" N 2, M], M 2, Q], Q2 in region two (gap) can be easily
obtained. Therefore in region two, the following holds

Nll/ = A N2J[ = No-A (33)

Qll/=B Qw=B (34)

(35)

where A, Band D are constants and can be determined together with C;'s by using the
appropriate boundary and continuity conditions.

Boundary conditions
As was mentioned earlier the adhesive is divided into three regions (I, II, III).
In region I, at x = -I

(36)

and in region III, at x = I

(37)

Note that in the above equations, the first subscript represents the adherend, while the
second subscript represents the region number.

There are 6 continuity conditions which are given as follows:
At x = X 1 (interface of region I and II)

(38)

and at x = X2 (interface of region II and III)
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There are 15 constants of integration (6 in region I, 6 in region III, 3 in region II), therefore
to obtain the solution for all regions, 3 more conditions are needed, which are as follows.
(See Appendix for the details of the derivation.)

and

(42)

Results and discussion
The method developed in this paper is used to analyze a simple lap joint with a gap in

the adhesive. Using this method for the case with no gap (void) produces results identical
to the ones given by Delale et al. (1981), validating the present approach. A comparison of
the results obtained by each approach is given in Table 1. The properties used in present
calculations for the adherends and adhesive are given here as follows. Adherend 1 is
boron-epoxy orthotropic plate (E lx = 3.24 X 107 psi, E lz = 3.5 X 106 psi, G1 = 1.23 X 106

psi, V lx = 0.23, hi = 0.03 in.), adherend 2 is aluminium plate (Ez = 107 psi, Vz = 0.3,
hz = 0.09 in.) and the adhesive is made of epoxy (E = 4.45 x 105 psi, G = 1.65 X 105 psi,
ho = 0.004 in.).

Table I. Comparison of present results with Delale et al. (1981)

Present results Delale et al. (1981)
X f ij f ij

~I.OO -13.4362841 41.1925850 ~ 13.436 41.191
-0.90 -3.6897621 ~4.2951283 -3.690 -4.295
~0.80 -0.8575040 -1.7132319 -0.858 ~1.713

-0.70 ~0.1411121 -0.5552792 -0.141 -0.555
-0.60 0.0112195 -0.1832258 0.011 ~0.183

~0.50 0.0281249 ~0.0629277 0.028 ~0.063

-0.40 0.0198290 ~0.0227094 0.020 -0.023
-0.30 0.0110012 -0.0087121 0.011 -0.009
-0.20 0.0051124 ~0.0036940 0.005 -0.004
-0.10 0.0012140 -0.0020126 0.001 -0.002

0.00 -0.0022779 -0.0018766 -0.002 -0.002
0.10 ~0.0072486 -0.0029729 -0.007 -0.003
0.20 ~0.0166439 ~0.0058942 -0.017 ~0.006

0.30 -0.0361454 -0.0123793 -0.036 -0.012
0.40 0.0775971 -0.0263139 -0.078 ~0.026

0.50 -0.1662305 -0.0560145 -0.166 -0.056
0.60 -0.3561518 -0.1190566 -0.356 -0.119
0.70 -0.7638092 -0.2521242 -0.764 -0.252
0.80 -1.6409304 -0.5259318 -1.641 -0.526
0.90 -3.5379338 -0.8505507 -3.538 -0.851
1.00 ~ 7.8056602 9.6929560 -7.806 9.693
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In the results that follow, (j and fare nondimensional peel stress and shear stress in
the adhesive respectively, and they are defined as follows:

(j = C5(3i) f = -r(3i).
No No

(43)

Figure 6 shows the peel stress (j vs the overlap length (X). Adherends I and 2 are
identical (boron-epoxy laminates) and the adhesive (epoxy) length is 1.0 in. The gap (void)
is symmetric and its length is 0.2 in. It can be seen that the gap will increase the value of
peel stress at the interface of the gap and the bond, but the peel stress (j will increase slightly
at the edges compared to the case without the gap. The shear stress is plotted against the
position along the overlap in Fig. 7 for the case with no gap (void) and the case with a gap
(void) present. The length of the gap is 0.3 in. and is close to the edge. Figure 7 shows that
the shear stress is essentially unaffected far from the void (left edge), when compared to the
case with no void. The inclusion of bending in the formulation seems to create a narrower
boundary layer near the edges of the overlap compared to the shear lag model results
obtained by Rossettos et al. (1993, 1994), where the joint is rigid in bending. It should be
pointed out that since the joint used in this analysis is not rigid in bending, and the problem
is formulated with bending (rotation) considered, more deformation mechanisms are
involved and energy is divided between peel and shear strain energies. Figure 8 shows the
peel stress (j as a function of distance along the overlap length (X). The gap (void) is 0.1
in. It can be seen that the effect of the gap on the peel stress is a largely steep edge effect.
The gap appears to relieve the stresses at the edge of the overlap (near the gap), while the
peel stress increases at the edge of the gap itself compared to the no gap case. The same
trend can be seen in Fig. 9, where the gap (void) length is larger (0.3 in.). Figure 10 shows
that the peak peel stresses decrease 40% by increasing the adhesive thickness. Note that for
Figs 7-10, the curves are non-symmetric due to bending. In all cases, regardless of the
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Fig. 6. Peel stress {j vs distance X along overlap with a symmetric gap (void), identical adherends;

gap size = 0.2 in.
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Fig. 7. Shear stress f vs distance X along overlap with a gap and no gap; gap (void) size = 0.3 in.
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Fig. 10. Peel stress (J vs distance X along overlap for different adhesive thickness with no gap.



2692 M. alia and J. N. Rossettos

presence of gaps (voids), the peak stresses always occur at the extreme ends of the adhesive
bond.

CONCLUSIONS

A convenient method is developed to analyze a simple lap joint with a gap (void)
defect in the adhesive, and undegoing general bending deformation. It is limited to a two
dimensional plane strain analysis. The method is a variation of an approach used by Delale
et at. (1981) for the continuous joint. Using the present method for the case with no gap
produces results identical to those of Delale et at. (1981). The present method is particularly
useful in handling the boundary and continuity conditions for problems with gap (void)
defects in the adhesive. The solution procedure is applicable to adhesively bonded plates
which are assumed to be orthotropic and isotropic. The results show that inclusion of
bending in the formulation creates a narrower boundary layer compared to the shear lag
model (see e.g. Rossettos et at. (1993, 1994)) and stresses are essentially unaffected far from
the void. If the void is sufficiently close to the end of the overlap, the stresses can be affected
as much as 25%. The results also show that the effect of the gap (void) on the peel and
shear stresses are largely steep edge effects. The gap appears to relieve the stresses at the
edge of the overlap (near the gap), while the peel and shear stresses increase at the edge of
the void itself. One should note that since the loading is not centric and because bending is
considered, more deformation mechanisms are involved, which affect the stresses. Regard­
less of the presence of gaps (voids), the results show that the most critical stress state occurs
at the extreme ends of the adhesive bond.

REFERENCES

Delale, F., Erdogan, F. and Aydinoglu, M. N. (1981). Stress in adhesively bonded joints : a closed-form solution.
J. Compo Materials 15, 249-271.

Erdogan, F. and Ratwani, M. (1971). Stress distribution in bonded joints. J. Compo Materials 5, 378-393.
Hart-Smith, L. J. (1981). Further developments in the design and analysis of adhesive-bonded structural joints.

In Joining of Composite Materials, ASTM STP 749 (Edited by K. T. Keward), pp. 3-31.
Kan, H. P. and Ratwani, M. M. (1983). Stress analysis of stepped-lap joints with bondline flaws. J. Aircraft 20,

848-852.
alia, M., (1992) Ph.D. thesis, Department of Mechanical Engineering, Northeastern University, Boston, MA.
Renton, W. J. and Vinson, J. R. (1977). Analysis of adhesively bonded joints between panels of composite

materials. ASME. J. Appl. Mech. 44, 101-106.
Rossettos, J. N. and Zang. E. (1993). On the peak stresses in adhesive joints with voids. ASME. J. Appl. Mech.

60,559-560.
Rossettos, J. N .. Lin, P. and Nayeb-Hashemi. H. (1994). Comparison of the effects of debonds and voids in

adhesive joints. ASME, 1. Engng Materials Tech. 116,533-538.
Williams, J. H. Jr. (1975). Stresses in adhesive between dissimilar adherends. J. Adhesion 7, 97--107.

APPENDIX A

Continuity conditions over gap (void) region
To derive the continuity equations needed over the gap (void) region, we combine the equilibrium equations

and stress-strain equations.
To derive eqn (40), the following can be done. Consider the strains

"J = (dUI _~ df3 l
)

• dx 2 dx

_(dU 2 _ !:2 df3 2 )
"2, - dx 2 dx

and the axial strain in the adhesive Ex is the average of the axial strains in plate I and 2, so

Using eqns (AI) and (A2). and integrating

(AI)

(A2)

(A3)
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(A4)

(AS)

(A6)

(A7)

Equations (A6) and (A7) involve the change in the displacements at the adherend/adhesive interface as we go
from Xl to xt over the gap region.

Using eqns (7-8) and (11-12), the following can be obtained.

(A8)

(A9)

Using eqns (15), (17) and (1-2), the load in the two plates can be related to axial displacements and rotation in
the following

(AIO)

(All)

Combining eqns (AlO, All) and (A8, A9), results in eqn (40)

To derive eqn (41), a similar scheme (as discussed above) can be used. Equilibrium eqn (5), can be combined with
eqns (A8, A9) and (AlO, All), which results in the following

(AI3)

and similarly

(AI4)

Subtracting eqn (AI3) from eqn (AI4) and using eqns (A8-AIl) yields eqn (41).


